
Autoencoder neural networks
as recommendation engines

Senior Data Scientist
PhD Candidate, UE Wroc

Filip Wójcik

filip.wojcik@outlook.com

https://filip-wojcik.com

presentation
agenda

page
02

recommendation
systems

What are they and how do they
work? Why do we use tchem?

classic approaches

What approaches have been used
so far?

business problem
definition

What is the problem to solve?

presentation
agenda

page
03

autoencoders
Specific type of neural network

used to rebuild the matrix

a case study
Comparison between classic
algorithms and the autorec

system

Business
problem

business
problem

page
05

Given an existing user base and a set of products, how we can
make recommendation systems better – to improve hints
quality, stability of the system as well as to make it more
robust to rapidly changing environment?

business
problem

page
06

01
How Company can improve recommendations?
Given a large number of ratings / users, how the Company can improve
suggestings/recomnnedations given to tchem?

02
How a system can become more inteligent?
Given a constantly changing environment, user comments and interaction with others
– how a recommendation system can accept new data without complete redesign?

03
How to make system more flexible and universal?
Given a new data sources, how system can be adjusted to use them without a need to
reimplement it?

executive
summary

page
07

Autoencoder networks can be used as a recommendation engines
Properly designed autoencoder neural networks can be used as a recommendation engines – learning hidden
(latent) patterns from users’ behaviour

Autoencoders outperform classical approaches
Studies on artificial/benchmark datasets as well as on real cases show, that autorencoder recommendaation
engines can outpuerform calssical approaches like collaborative filtering or matrix decomposition

Autoencoders are more flexible and able to use other data sources
Autoencoders can be designed using different NN architectures, including also „static data” processing – e.g. additional
information about the client or the product. Therefore they can combine features of content-based and collaborative
recommendation engines.

Recommendation
Systems

What are they? How do they work and what they are used

for? What are the most common issues they can fall into?

recommendation
systems

page
09

Preference analysis

• Consumer behaviour analysis

• Attempting to find behaviour
patterns

• Search for similarities
between people and products

• A difficult task at a time
when the product offer is very
wide

Goal

• Attempting to reconstruct hidden
(latent) factors influencing
decisions

• On the basis of such
reconstruction, anticipating future
behaviour

• Recommend products that
conform to users’ preferences

• This overall idea can be
implemented in many ways

Representation

• Users ' or customers '
preferences are most often
seen as ratings

• User ratings are the base
material for a
recommendation engine

• The System does not have
access to most of the
variables describing people
and products

recommendation
systems

page
010

01
moderate activity of users
The amount of goods purchased by customers is
usually small in relation to the entire offer, and often
people make individual purchases in a particular store

02
problem of cold start
It's hard to recommend anything to new users if their preferences are
unknown.

03
significant bias of ratings
The problem of negative reviews on the internet is widely
known. People are often very critical, or just don't want to
leave any positive feedback.

Classic Algorithms

There are many architectures of recommendation engines.

The concepts used in them are also used by autoencoders.

classic
algorithms

page
012

approach based on models + content based filtering
An attempt to frame recommendation problem as a classic machine learning task.
Requires knowledge of attributes that characterising users and products. Then they are
connected with each other to make a prediction

collaborative filtering
The rating matrix and distance measure are sufficient to operate these types of systems.
An algorithm searches for vectors similar to a given user/product. Recommends items
that are „missing” from the currently processed using the appropriate formula

latent factors model
An approach based on matrix decomposition and analysis of hidden (latent) factors. The
matrix decomposition is intended to reveal invisible connections between users and latent
features (factors) as well as products and latent features (factors). On this basis, new
elements are suggested. Mathematical decomposition of matrices – e.g. Svd, NNMF, etc.

classic
algorithms

page
013

User
feature 1

User
feature 2

…
User

feature n
Item

feature 1
Item

feature 2
…

Item
feature m

Rating

approach based on models + content based filtering
An attempt to frame recommendation problem as a classic machine learning task.
Requires knowledge of attributes that characterising users and products. Then they are
connected with each other to make a prediction

classic
algorithms

page
014

collaborative filtering
The rating matrix and distance measure are sufficient to operate these types of systems.
An algorithm searches for vectors similar to a given user/product. Recommends items
that are „missing” from the currently processed using the appropriate formula

Rajaraman, A. and Ullman, J.D., 2011. Mining of massive datasets. Cambridge University Press.

KNN

sij xi, xj = cosine(θ)

classic
algorithms

page
015

latent factors model
An approach based on matrix decomposition and analysis of hidden (latent) factors. The
matrix decomposition is intended to reveal invisible connections between users and latent
features (factors) as well as products and latent features (factors). On this basis, new
elements are suggested. Mathematical decomposition of matrices – e.g. Svd, NNMF, etc.

Rajaraman, A. and Ullman, J.D., 2011. Mining of massive datasets. Cambridge University Press.

𝒓 =

autoencoders

Neural networks with proper structure can be used to

express latent factors, just like matrix decomposition. This
approach is widely used in e.g. image processing.

Autoencodery
rekomendacyjne

page

017

2015

autoencoders
characteristics

page
018

input reconstructed on output
Autoencoders accept input and map them to the output. So there's no classic
classification or regression – it's about recreating. A classic example of use
is the image denoising.

https://blog.keras.io/building-autoencoders-in-keras.html

autoencoders
characteristics

page
019

compression of latent representation
When processing input into output, Autoencoder perform compression. This
is the same as making a non-linear reduction in dimensionality. Such a
compressed dimension can be interpreted as latent variables/factors!

https://blog.keras.io/building-autoencoders-in-keras.html

autoencoders
characteristics

page
020

flexible architecture
Autoencoders can take any form – from simple networks with one hidden layer, to deep
networks with multiple layers of compression, to deep stacked autoencoders
(autoencoders compiled independently into one network)

https://www.jeremyjordan.me/autoencoders/

autoencoders
characteristics

page
021

hybrid networks
Hybrid autoencoders can use additional information as input – not only ratings matrix,
but also item/user descriptions or features. This makes them similar to model-based
approaches, where a system can utilize external information.

autoencoders
characteristics

page
022

simple and flexible training
Autoencoders can be trained like any other deep neural netowork or using greedy layer-
wise pretraining, where every partial autoencoder is trained separately and then added
to the stack.
Autoencoders can be also trained with shared input/output weights (one of the most
popular methods initially).

𝑙 − 𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑜 − 𝑎𝑢𝑡𝑜𝑒𝑛𝑐𝑜𝑑𝑒𝑟′𝑠 𝑖𝑛𝑝𝑢𝑡
ො𝑎 − 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑛 𝑜𝑢𝑡𝑝𝑢𝑡
ℎ 𝑥 − 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑛 𝑖𝑛𝑝𝑢𝑡
𝑊 −𝑤𝑒𝑖𝑔ℎ𝑡𝑠 (𝑐𝑎𝑛 𝑏𝑒 𝑠ℎ𝑎𝑟𝑒𝑑)

autoencoders
characteristics

page
023

training schedule for autoencoders
In the case of a recommendation system, the mere reconstruction of a matrix from latent variables
is an intermediate task.
The real goal is to check the generalization of the system.

Error in reconstruction– informs how well autoencoder „understood” latent variables
Error in prediction – helps in assessing predictive power and generalization to unseen ratings

User \ Movie M1 M2 … Mn

U1 5.0 3.0 -

U2 3.5 - 3.5

U3 4.0 4.5 -

U4 1.0 1.5 5.0

U5 3.5 5.0 4.0

U6 3.5 4.5 3.5

autoencoders
characteristics

page
024

User \ Movie M1 M2 … Mn

U1 5.0 3.0 -

U2 3.5 - 3.5

U3 4.0 4.5 -

U4 1.0 1.5 5.0

U5 3.5 5.0 4.0

U6 3.5 4.5 3.5

Train data
reconstruction

Validation data
reconstruction

Test data
reconstruction +
prediction

?

?

?

autoencoders
characteristics

page
025

Training data
reconstruction

Validation data
reconstruction

Test data
reconstruction+
prediction

h 𝐫; θ = f 𝑊𝑜𝑢𝑡 ⋅ 𝑔 𝑊𝑖𝑛 ⋅ 𝒓 + 𝑏𝑖𝑛 + 𝑏𝑜𝑢𝑡

𝑊𝑖ℎ ,𝑊ℎ𝑜 − 𝑖𝑛𝑝𝑢𝑡 / 𝑜𝑢𝑡𝑝𝑢𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑐𝑎𝑛 𝑏𝑒 𝑠ℎ𝑎𝑟𝑒𝑑)
𝑏𝑖𝑛, 𝑏𝑜𝑢𝑡 − 𝑖𝑛𝑝𝑢𝑡 / 𝑜𝑢𝑡𝑝𝑢𝑡 𝑏𝑖𝑎𝑠
𝜃 − 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑎𝑢𝑡𝑜𝑒𝑛𝑐𝑜𝑑𝑒𝑟 𝑝𝑎𝑟𝑎𝑚𝑠 (W, b)
𝑔 𝑥 − 𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑖𝑛𝑛𝑒𝑟 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑓 𝑧 − 𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝒓 − 𝑎 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅 𝑟𝑒𝑎𝑙𝑙𝑦 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔, 𝑛𝑜𝑡 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑛𝑔𝑠
𝒚 − 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 "hidden" ratings 𝑓𝑟𝑜𝑚 𝑡𝑒𝑠𝑡 𝑠𝑒𝑡
ℎ 𝒓; 𝜽 − 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑢𝑡𝑜𝑒𝑛𝑐𝑜𝑑𝑒𝑟 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛

Goodfellow, I., Bengio, Y. i Courville, A. (2016) Deep Learning. MIT Press.

ℒ1 𝒓, ℎ 𝒓; 𝜃 = ℒ1 𝒓, ො𝒓 =
1

𝒓

𝑖=1

𝒓

𝑟𝑖 − ෝ𝑟𝑖
2

Error in reconstruction: MSE

ℒ2 𝒚, ෝ𝒚

Error in prediction: any

autoencoders
characteristics

page
026

Training data
reconstruction

Validation data
reconstruction

Test data
reconstruction+
prediction

Goodfellow, I., Bengio, Y. i Courville, A. (2016) Deep Learning. MIT Press.

ℒ1 𝒓, ℎ 𝒓; 𝜃 = ℒ1 𝒓, ො𝒓 =
1

𝒓

𝑖=1

𝒓

𝑟𝑖 − ෝ𝑟𝑖
2

Error in reconstruction: MSE

ℒ2 𝒚, ෝ𝒚

Error in prediction: any

User \ Movie M1 M2 … Mn

U1 5.0 3.0 -

U2 3.5 - 3.5

𝒓

ො𝒓
User \ Movie M1 M2 … Mn

U1 4.874 4.001 -

U2 3.222 - 3.654

U5 3.5 5.0 4.0

U6 3.5 4.5 3.5

?
?

?

𝒚 = 3.5, 4.5, 4.0

ෝ𝒚 = 3.223, 4.894, 3.999

Example use case
How Autorec system can be used as a recommendation engine
in a real-world dataset?

example
use case

page
028

• Amazon sales dataset, category „All beauty” & „fashion”

• 5269 reviews in a whole dataset

• Biased ratings

• Experimented with 3x repeated 10-fold cross validation

• Additional product-relevant data:

• Size/type/style/design

• 400 unique text values

a case study on Amazon 2018 dataset

example
use case

page
029

Deep Hybrid Collaborative
Filtering [DHCF]

• (Rating input + user data input + content
input)– Encoder – Decoder

• Relu activation function
• Dropout on input to simulate missing ratings
• 256 latent states

Deep Collaborative Filtering
[DCF]

• Input – (Encoder –Encoder 2 – Decoder – Decoder2)
• Relu activation function
• Dropout on input to simulate missing ratings
• Regularization as well as intermediate dropout
• 256 latent states

Collaborative filtering
[CF]

• Classic matrix decomposition model + user/item
bias inclusion

• Builds user/item embeddings and performs
decomposition

• 256 latent states

a case study on Amazon 2018 dataset

example
use case

page
030

a case study on Amazon 2018 dataset

Model 1 Model 2
Metrics diff, pval

MSE MAE MAPE

DHCF DCF 0.055 0.0023 0.002

DHCF CF < 𝟎. 𝟎𝟎𝟏 < 𝟎. 𝟎𝟎𝟏 < 𝟎. 𝟎𝟎𝟏

DCF CF < 𝟎. 𝟎𝟎𝟏 < 𝟎. 𝟎𝟎𝟏 < 𝟎. 𝟎𝟎𝟏

Test Metrics comparison (std in brackets)

Model\Metric Test MSE Test MAE Test MAPE

DHCF 0.1698 (0.76) 0.1691 (0.375) 0.065 (0.24)

DCF 0.5392 (2.29) 0.3592 (0.63) 0.139 (0.49)

CF 22.8573 (4.9) 4.7270 (0.71) 0.986 (0.02)

example
use case

page
031

a case study on Amazon 2018 dataset

• Both Autorecommender versions proven to be significantly better than Collaborative Filtering approach

• Hybrid Autorecommender proven to be marginally better than Deep Autorecommender

• Hybrid Autorecommender proven to converge faster although can become unstable during training

• Both autorecommender implementation provide the same funcitonality as Collaborative Filtering – latent states
directly correspond to factorized matrix

• Additionally – autorecommender’s flexible architecture makes them much more usable

research
publications

page
032

Li, Sheng, Jaya Kawale, and Yun Fu. "Deep collaborative filtering via marginalized denoising auto-encoder." Proceedings of
the 24th ACM International on Conference on Information and Knowledge Management. ACM, 2015.

Li, Xiaopeng, and James She. "Collaborative variational autoencoder for recommender systems." Proceedings of the 23rd
ACM SIGKDD international conference on knowledge discovery and data mining. ACM, 2017.

Ouyang, Yuanxin, et al. "Autoencoder-based collaborative filtering." International Conference on Neural Information
Processing. Springer, Cham, 2014.

Sedhain, Suvash, et al. "Autorec: Autoencoders meet collaborative filtering." Proceedings of the 24th International Conference
on World Wide Web. ACM, 2015.

Wang, Hao, S. H. I. Xingjian, and Dit-Yan Yeung. "Collaborative recurrent autoencoder: Recommend while learning to fill in the
blanks." Advances in Neural Information Processing Systems. 2016.

Wójcik, F., and Górnik, M. „Improvement of e-commerce recommendation systems with Deep Hybrid Collaborative Filtering
with content: A case study”. Econometrics. Ekonometria. Advances in Applied Data Analysis, 24(3), 2020

Thank
you

