—

Filip Wojcik
Senior Data Scientist

PhD Candidate, UE Wroc

filip.wojcik@outlook.com
https://filip-wojcik.com

Autoencoder neural networks
as recommendation engines

presentation
agenda

o o o

business problem recommendation classic approaches
definition systems

What approaches have been used

What is the problem to solve? ~ What are they and how do they <o far?

work? Why do we use tchem?

presentation

agenda

autoencoders

Specific type of neural network
used to rebuild the matrix

a case study

Comparison between classic
algorithms and the autorec
system

Business
problem

business
problem

‘7Given an existing user base and a set of products, how we can
make recommendation systems better — to improve hints
quality, stability of the system as well as to make it more
robust to rapidly changing environment? J

business
problem

How Company can improve recommendations?

Given a large number of ratings / users, how the Company can improve
suggestings/recomnnedations given to tchem?

01

0 2 How a system can become more inteligent?

Given a constantly changing environment, user comments and interaction with others

— how a recommendation system can accept new data without complete redesign?

How to make system more flexible and universal?

Given a new data sources, how system can be adjusted to use them without a need to
reimplement it?

|execuﬁve
summary

Properly designed autoencoder neural networks can be used as a recommendation engines — learning hidden
(latent) patterns from users’ behaviour

@ Autoencoder networks can be used as a recommendation engines

\/ Autoencoders outperform classical approaches
Studies on artificial/benchmark datasets as well as on real cases show, that autorencoder recommendaation

engines can outpuerform calssical approaches like collaborative filtering or matrix decomposition

@ Autoencoders are more flexible and able to use other data sources

Autoencoders can be designed using different NN architectures, including also ,static data” processing — e.g. additional
information about the client or the product. Therefore they can combine features of content-based and collaborative
recommendation engines.

Recommendation
Systems

What are they? How do they work and what they are used
for? What are the most common issues they can fall into?

recommendation
systems

Preference analysis

Consumer behaviour analysis

Attempting to find behaviour
patterns

Search for similarities
between people and products

A difficult task at a time
when the product offer is very
wide

Representation

e Users ' or customers'
preferences are most often
seen as ratings

 User ratings are the base
material for a
recommendation engine

« The System does not have
access to most of the
variables describing people
and products

Goal

 Attempting to reconstruct hidden
(latent) factors influencing
decisions

* On the basis of such
reconstruction, anticipating future
behaviour

« Recommend products that
conform to users’ preferences

 This overall idea can be
implemented in many ways

recommendation

systems

01
02
03

moderate activity of users

The amount of goods purchased by customers is
usually small in relation to the entire offer, and often
people make individual purchases in a particular store

problem of cold start

It's hard to recommend anything to new users if their preferences are
unknown. S%a

significant bias of ratings

The problem of negative reviews on the internet is widely
known. People are often very critical, or just don't want to
leave any positive feedback.

Classic Algorithms

There are many architectures of recommendation engines.
The concepts used in them are also used by autoencoders.

classic
algorithms

@

Y

approach based on models + content based filtering

An attempt to frame recommendation problem as a classic machine learning task.
Requires knowledge of attributes that characterising users and products. Then they are
connected with each other to make a prediction

collaborative filtering

The rating matrix and distance measure are sufficient to operate these types of systems.
An algorithm searches for vectors similar to a given user/product. Recommends items
that are ,missing” from the currently processed using the appropriate formula

latent factors model

An approach based on matrix decomposition and analysis of hidden (latent) factors. The
matrix decomposition is intended to reveal invisible connections between users and latent
features (factors) as well as products and latent features (factors). On this basis, new
elements are suggested. Mathematical decomposition of matrices — e.g. Svd, NNMF, etc.

| classic
algorithms

approach based on models + content based filtering

9 An attempt to frame recommendation problem as a classic machine learning task.
Requires knowledge of attributes that characterising users and products. Then they are
connected with each other to make a prediction

User User User Item Item Item
feature 1 feature 2 feature n feature 1 feature 2 feature m

X1 X Xy
. §| X11 X1z X1d

). Xnl Xn2 e Xnd

classic
algorithms

Y

KNN

Sij (xi, xj) = cosine(0)

collaborative filtering

The rating matrix and distance measure are sufficient to operate these types of systems.
An algorithm searches for vectors similar to a given user/product. Recommends items
that are ,missing” from the currently processed using the appropriate formula

users

1 12 |3 |4 |5 |6 |7 |8 |9 10|11 |12

1 |1 3 5 215 [7?4

2 5 |4 4 2 (1 |3
" : ST
2 3 1|2 |4 1 |2 3 4 |3 |5 o= ZJEN(:;J:) gy Y
o xi
S S ..

4 2 |4 5 4 ’p 2 EjEN(.i;I) ij

5 4 |3 |4 |2 2 |5

6 |1 3 3 2 4

- unknown rating - rating between 1 to 5

Rajaraman, A. and Ullman, J.D., 2011. Mining of massive datasets. Cambridge University Press.

classic
algorithms

latent factors model

@ An approach based on matrix decomposition and analysis of hidden (latent) factors. The
matrix decomposition is intended to reveal invisible connections between users and latent
features (factors) as well as products and latent features (factors). On this basis, new
elements are suggested. Mathematical decomposition of matrices — e.g. Svd, NNMF, etc.

users _factors
1 3 5 5 4 -1 4 |2
5|6 |5 users
- 5| 4 4 2l 1|3 —
=y R 3 sl 3l 5 2|13 |5 11]l-2 |3 |5 |2 |-5 |8 |-4 |3 [14]024 g
D ~ . . o~
= 212 = 2 > ~ 1112113 8 | 7 14 | 3 1 14 |29 | -7 |12 1 ,-__-_,‘
» 21 | -4 |6 |17 |24]|9 |-3 |4 |8 |7 |-8]| W
4] 3| 4| 2 2| 5 c 7 |21 | -2 L |
1 3 3 2 4 g 1 7 3 PT
A -4 .2
users
-5 B 5
(7)) % 1.1 2 3 5 2 5 8 4 3 1.4 2.4 9
E 2 3 5
@ 8 7 5 1.4 3 1 1.4 2.9 7 1.2 1 1.3
r — = 111 2.1 3 ®
- w—l 2.1 4 6 1.7 2.4 9 3 4 8 7 6 1
-7 2.1 -2
-1 i 3 PT
factors Q

Rajaraman, A. and Ullman, J.D., 2011. Mining of massive datasets. Cambridge University Press.

Neural networks with proper structure can be used to

express latent factors, just like matrix decomposition. This
approach is widely used in e.g. image processing.

autoencoders

Autoencodery

rekomendacyjne

AutoRec: Autoencoders Meet Collaborative Filtering

Suvash Sedhain’™, Aditya Krishna Menon'*, Scott Sanner’, Lexing Xie*'
" NICTA, = Australian National University
suvash.sedhain@anu.edu.au, { aditya.menon, scott.sanner }@nicta.com.au,
lexing.xie@anu.edu.au

ABSTRACT

This paper proposes AutoBRec, a novel autoencoder frame-
work for collaborative filtering (CF). Empirically, AutoRec’s
compact and efficiently trainable model outperforms state-
of-the-art CF technigues (biased matrix factorization, RBM-
CF and LLORMA) on the Movielens and Netflix datasets.

Categories and Subject Descriptors D.2.8 [Informa-
tion Storage and Retrieval|lnformation Filtering

Keywords Recommender Systems; Collaborative Filtering;
Autoencoders

1. INTRODUCTION

Collaborative filtering (CF) models aim to exploit infor-
mation about users’ preferences for items (e.g. star ratings)
to provide personalised recommendations. Owing to the
Netflix challenge, a panoply of different CF models have
been proposed, with popular choices being matrix factori-
sation |1, 2| and neighbourhood models [5]. This paper
proposes AutoRec, a new CF model based on the autoen-
coder paradigm; our interest in this paradigm stems from
the recent successes of (deep) neural network models for vi-
sion and speech tasks. We argue that AutoRec has represen-
tational and computational advantages over existing neural
approaches to CF [4], and demonstrate empirically that it
outperforms the current state-of-the-art methods.

2, THE AUTOREC MODEL

In rating-based collaborative filtering. we have m users,

o9 G
il o - el ! S
N, A U AN A N A

r“l = {h‘_“ ff__,.J II‘;J,J fi}.uu-]

i = 1...n

Figure 1: ltem-based AutoRec model. We use plate notation
to indicate that there are n copies of the neural network (one
for each item), where W and V are tied across all copies.

where h(r;#) is the reconstruction of input r € B?,
hir;8) = f (W -g(Vr+ u) + b)

for activation functions f(-),g(-). Here, 8 = {W,V, u,b}
for transformations W € R?*¥ V € R** and biases p €
R* b € R?. This objective corresponds to an anto-associative
neural network with a single, k-dimensional hidden layver.
The parameters 6§ are learned using backpropagation.

The item-based AutoRec model, shown in Figure 1, ap-
plies an autoencoder as per FEquation 1 to the set of vectors
{r'"'}i,, with two important changes. First, we account for
the fact that each r'*’ is partially observed by only updating
during backpropagation those weights that are associated

writh nhocorvod inmrte ae ie oo in mateivy foastaricatinn

2015

page
017

| autoencoders
characteristics

\/ input reconstructed on output
Autoencoders accept input and map them to the output. So there's no classic

classification or regression — it's about recreating. A classic example of use
is the image denoising.

—> Encoder —>E—> Decoder —>

Original
input

Reconstructed
input

Compressed
representation

https://blog.keras.io/building-autoencoders-in-keras.html

autoencoders
characteristics

\/ compression of latent representation

When processing input into output, Autoencoder perform compression. This
is the same as making a non-linear reduction in dimensionality. Such a
compressed dimension can be interpreted as latent variables/factors!

—> Encoder —>E—> Decoder —>

Original q
input BECﬂnstructe
input
Compressed
representation
1 -4 2
users
5 | .6 5
n 11 (-2 |3 5 |2 |-5 |8 |-4 |3 14 (24 |-9
| -
E 2 3 5
o -8 |7 5 14 |3 |- 14 |29 |[-7 [12 |[-1 |13
=11 |21 3 o
w—l21 |-4 |6 17 |24 | 9 -3 | 4 8 |7 -6 |1
7 |21 2
1 7 3 ,:
factors Q

https://blog.keras.io/building-autoencoders-in-keras.html

autoencoders
characteristics

\/ flexible architecture
Autoencoders can take any form — from simple networks with one hidden layer, to deep

networks with multiple layers of compression, to deep stacked autoencoders
(autoencoders compiled independently into one network)

e, -
X
X4 i‘,“’\\ .

7/

N7 O\

4.7 »

e
&

N

\ iS
Xs

\
\", .~‘

X4 VJ "“V a3

X m

https://www.jeremyjordan.me/autoencoders/

W

N A
) X
\ /f‘f
/NN
I' X
X
V VAN

| decoder

DED
o

page
020

| autoencoders
characteristics

\/ hybrid networks

Hybrid autoencoders can use additional information as input — not only ratings matrix,
but also item/user descriptions or features. This makes them similar to model-based
approaches, where a system can utilize external information.

input_2: InputLayer input_1: InputLayer input_4: InputLayer input_7: InputLayer input_8: InputLayer

A /F i ‘ "

userembed: Embedding ubias: Embedding iembed: Embedding ibias: Embedding col_embed: Embedding stylename_embed: Embedding scent_embed: Embedding

\ 1 l ! \ / /

flatten: Flatten flatten_1: Flatten flatten_2: Flatten flatten_3: Flatten flatten_5: Flatten flatten_8: Flatten flatten_9: Flatten
concatenate: Concatenate concatenate_1: Concatenate concatenate_2: Concatenate
\ | :/
dropout: Dropout dropout_1: Dropout dropout_2: Dropout
\1 \ /
dense: Dense dense_1: Dense dense_2: Dense

Sy

concatenate_3: Concatenate

. J
dense_3: Dense

dense_4: Dense

| autoencoders
characteristics

\/ simple and flexible training
Autoencoders can be trained like any other deep neural netowork or using greedy layer-

wise pretraining, where every partial autoencoder is trained separately and then added

to the stack.
Autoencoders can be also trained with shared input/output weights (one of the most

popular methods initially).

| — loss function

0 — autoencoder’s input

a — activation function on output
h(x) — activation function on input
W — weights (can be shared)

o(a(2)) = o(c + WTh(x)) = o(c + WTa(b+ Wz))

ol ol Oa, Oh; ol

ama:aajaw;jza(h‘ ﬂ"mﬂj):a hi + S T

| autoencoders
characteristics

In the case of a recommendation system, the mere reconstruction of a matrix from latent variables
is an intermediate task.

The real goal is to check the generalization of the system.

@ training schedule for autoencoders

Error in reconstruction— informs how well autoencoder ,understood” latent variables
Error in prediction — helps in assessing predictive power and generalization to unseen ratings

User \ Movie

autoencoders
characteristics

Train data
reconstruction

Validation data

reconstruction

Test data

reconstruction +
prediction

User \ Movie
UT 5.0 3.0 -

U2 3.5 - 3.5
U3 4.0 4.5 -
U4 1.0 1.5 5.0
s S ES
U6 3.5 3.5

autoencoders
CharaCteriStiCS Win, Wy, — input / output weight (can be shared)

by, byye — input / output bias

0 — set of all autoencoder params (W, b)

g(x) — nonlinear inner activation function

f (z) — nonlinear output activation function

r —a matrix of observed (really existing,not missing) ratings
y — vector of "hidden" ratings from test set

h(r;0) — functional autoencoder description

h(r;0) = f(Wout ' g(Win T+ bin) T bout)

Training data Validation data Test data
reconstruction reconstruction reconstruction+
prediction
1 r
L(rh(r0) = Li(r#) = 0 |) (=)3 £,(,9)
V i=1
Error in reconstruction: MSE Error in prediction: any

Goodfellow, I., Bengio, Y. i Courville, A. (2016) Deep Learning. MIT Press.

=

autoencoders

characteristics
Training data Validation data
reconstruction reconstruction
1 r
. _ A)2
£1(r,h(r;0) = £:(r,#) = o \1 ;(n)

Error in reconstruction: MSE

User \ Movie

User \ Movie

U1 4.874 4.001
U2 3.222 - 3.654

Goodfellow, I., Bengio, Y. i Courville, A. (2016) Deep Learning. MIT Press.

Test data

reconstruction+
prediction

LZ(yly)

Error in prediction: any

Us

- 5.0

U6

3.5 ?

3.5

y =13.5,4.5,4.0 |

y = [3.223,4.894,3.999 |

Example use case

How Autorec system can be used as a recommendation engine
in a real-world dataset?

example
use case

a case study on Amazon 2018 dataset

Amazon sales dataset, category ,All beauty” & ,fashion”

5269 reviews in a whole dataset

 Biased ratings

» Experimented with 3x repeated 10-fold cross validation
» Additional product-relevant data:
 Size/type/style/design

« 400 unique text values

example
use case

-~ a case study on Amazon 2018 dataset

Deep Hybrid Collaborative Deep Collaborative Filtering Collaborative filtering

Filtering [DHCF] IDCF] [CF]

 (Rating input + user data input + content Input - (Encoder —Encoder 2 - Decoder - Decoder2) Classic matrix decomposition model + user/item
input)- Encoder - Decoder Relu activation function bias inclusion

 Relu activation function Dropout on input to simulate missing ratings Builds user/item embeddings and performs

 Dropout on input to simulate missing ratings ¢ Regqularization as well as intermediate dropout decomposition

e 256 latent states « 256 latent states « 256 latent states

A -4

-5 6

1.1 -2 3 5 -2 -5 8 -4 3 1.4 24

3

items

1.4 .3 -1 1.4 29 -7 1.2 -1 1.3

1.1 2.1

factors
~J
[4,]

21 -4 6 1.7 2.4 9 -3 4 8 7 -6 A

-7 241

w| | w|l ol |~

-1 7

factors Q

example
use case

-~ a case study on Amazon 2018 dataset

Metrics diff, pval

Model 1 Model 2
MSE MAE MAPE
DHCF DCF 0.055 0.0023 0.002
DHCF CF <0.001 <0.001 <0.001
DCF CF < 0.001 < 0.001 <0.001
Test Metrics comparison (std in brackets) " mode ¢
Bl DHCF

150 " o DCE .

Model\Metric Test MSE Test MAE Test MAPE 105 o CF
DHCF 0.1698 (0.76) 0.1691 (0.375) 0.065 (0.24) 1.00

0.75

value

DCF 0.5392 (2.29) 0.3592 (0.63) 0.139 (0.49) 0.50
==
0.00 ——

228573 (4.9) 4.7270(0.71) 0.986 (0.02)

MAE MAPE MSE
metric

example
use case

-~ a case study on Amazon 2018 dataset

Both Autorecommender versions proven to be significantly better than Collaborative Filtering approach

» Hybrid Autorecommender proven to be marginally better than Deep Autorecommender

» Hybrid Autorecommender proven to converge faster although can become unstable during training

« Both autorecommender implementation provide the same funcitonality as Collaborative Filtering — latent states
directly correspond to factorized matrix

 Additionally — autorecommender’s flexible architecture makes them much more usable

research
publications

Li, Sheng, Jaya Kawale, and Yun Fu. "Deep collaborative filtering via marginalized denoising auto-encoder." Proceedings of
the 24th ACM International on Conference on Information and Knowledge Management. ACM, 2015.

Li, Xiaopeng, and James She. "Collaborative variational autoencoder for recommender systems." Proceedings of the 23rd
ACM SIGKDD international conference on knowledge discovery and data mining. ACM, 2017.

Ouyang, Yuanxin, et al. "Autoencoder-based collaborative filtering." International Conference on Neural Information
Processing. Springer, Cham, 2014.

Sedhain, Suvash, et al. "Autorec: Autoencoders meet collaborative filtering." Proceedings of the 24th International Conference
on World Wide Web. ACM, 2015.

Wang, Hao, S. H. I. Xingjian, and Dit-Yan Yeung. "Collaborative recurrent autoencoder. Recommend while learning to fill in the
blanks." Advances in Neural Information Processing Systems. 2016.

Wojcik, F., and Gornik, M. ,Improvement of e-commerce recommendation systems with Deep Hybrid Collaborative Filtering
with content: A case study”. Econometrics. Ekonometria. Advances in Applied Data Analysis, 24(3), 2020

N Thank
you

