

XGBOOST AS A TIME-SERIES FORECASTING TOOL

SAMSUNG

Filip Wójcik

Objectivity Digital Transformation Specialists PhD Student on a Wroclaw University of Economics filip.wojcik@outlook.com

VERTICA

<u>Filip Wójcik, Data science</u>

Classification & regression algorithm

- Primarily intended for
 classification and regression
- Optimizes many different
 scoring and error functions
- Supports target functions:
 - Softmax
 - Logit
 - Linear
 - Poisson
 - Gamma

Based on trees

- Base estimators are decision
 trees
- Composite algorithm an ensemble
- Booting type algorithm increasing weight of harder
- examples
- Each tree improves previous

Good parallelization

- Trees are dependent on each other
- Parallelization occurs at the level of a single tree – for building successive nodes
- XGBoost uses compressed data format to save memory

What is XGBoost

 $l(x_1, x_2)$ – cost function $f_i(x)$ – i – th tree builing function

$$egin{aligned} \hat{y}_i^{(0)} &= 0 \ \hat{y}_i^{(1)} &= f_1(x_i) = \hat{y}_i^{(0)} + f_1(x_i) \ \hat{y}_i^{(2)} &= f_1(x_i) + f_2(x_i) = \hat{y}_i^{(1)} + f_2(x_i) \ & \cdots \ \hat{y}_i^{(t)} &= \sum_{k=1}^t f_k(x_i) = \hat{y}_i^{(t-1)} + f_t(x_i) \ \mathrm{obj}^{(t)} &= \sum_{i=1}^n l(y_i, \hat{y}_i^{(t)}) + \sum_{i=1}^t \Omega(f_i) \ &= \sum_{i=1}^n l(y_i, \hat{y}_i^{(t-1)} + f_t(x_i)) + \Omega(f_t) + constant \end{aligned}$$

Source: http://xgboost.readthedocs.io/en/latest/model.html#tree-ensemble

Source: http://xgboost.readthedocs.io/en/latest/model.html#tree-ensemble

ilin Wóicik, Data science

Rossmann – legendary competition

R@SSMANN

- Kaggle.com contest started in 2016r the goal was to forecast turnover based on historical values and data from macrosurroundings of stores
- 3303 teams took part
- A significant majority of kernels implemented the Xgboost algorithm
- Evaluation Metric RMSPE Root mean squared percentage error

RMSPE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{y_i}\right)^2}$$

- Best score approx. 10% error
- Typical problem of forecasting not classification or regression

Forecasting – training challenges

- Two types of variables
 - Static describing each store characteristics
 - Time series- turnover and customer count
- Challenge in training time series forecasting model
 - Standard cross-validation does not work
 - > Random selection ruins chronology and order
 - > OOB error is not the best estimator anymore
- Huge prediction variance between subsequent runs
- <u>Maintaining order and chronology is crucial to teach the model</u>
 - Seasonal trends
 - Autocorrelation

Store $^{\circ}$	DayOfWeek [‡]	Date 🌣	Sales 🌼	Customers $^{\circ}$	Open 🔅	Promo ÷	StateHoliday $^{\circ}$	SchoolHoliday
1	5	2015-07-31	5263	555	1	1	0	1
2	5	2015-07-31	6064	625	1	1	0	1
3	5	2015-07-31	8314	821	1	1	0	1
4	5	2015-07-31	13995	1498	1	1	0	1
5	5	2015-07-31	4822	559	1	1	0	1
6	5	2015-07-31	5651	589	1	1	0	1
7	5	2015-07-31	15344	1414	1	1	0	1
8	5	2015-07-31	8492	833	1	1	0	1
9	5	2015-07-31	8565	687	1	1	0	1
10	5	2015-07-31	7185	681	1	1	0	1
11	5	2015-07-31	10457	1236	1	1	0	1
12	5	2015-07-31	8959	962	1	1	0	1
13	5	2015-07-31	8821	568	1	1	0	0

<u>Filin Wóicik, Data science</u>

Data preparation

deviations

٠

Calculated per day-of-

week/week/month/quarter

Moving averages

weeks/etc.

Different orders - last day/5-days/2

- Month Number
- Quarter number

-ilin Wóicik, Data science

Data preparation

Shop

2

Training method

- Classic cross-validation does not work due to
 variance changing in time
- Methodology characteristic for forecasting models (like ARIMA) was used:
 - Gradually move prediction window and training
 data
 - Keep order
 - Move one-time-chunk at a time
- Model was trained on larger and larger data, and predicting one-step ahead
- Additionally using classic XGB metrics like OOB

Source: https://robjhyndman.com/hyndsight/tscv/

score

ilin Wáicik Dat

Comparison to other models

The goal of study and assumptions

Research question

Comparative study of different forecasting methods using exogenous (static) variables

Statistical comparison of prediction quality

- Systemathic comparison of forecasts
- Is there a statistically SIGNIFICANT difference?

Coefficient importance check

- In case of "classic" models parameters interpretaion
- In case of XGBoost feature importance calculation

Comparison to other models

TRAINING METHODS

CLASSIC MODELS

One model per store

For each store – separate model was trained

Automatic params tuning

Params for each model were selected automatically using optimization techniques (AIC, BIC, RMSPE). Random sample was manually cross-checked

Missing values interpolation

In case of missing values – polynomial interpolation was used

One model for full dataset Experimental study indicated that seasonal indices + exogenous variables are enough for model to generalize. One

XGBOOST

Time-series validation

One-step Ahead validation technique was used, enriched with 1000 last observations from ordered dataset

Regression trees

model for full dataset is enough

Base estimators were regression trees and $\ensuremath{\mathsf{RMSPE}}$ – error function

Results analysis

Metric (median)	SARIMAX	Holt-Winters	XGBoost
Theil's coefficient	0.061	0.059	0.1364
R^2	0.838	0.54	0.92
RMSPE (valid.)	0.17	0.18	0.13
RMSPE (leaderboard)	0.16	0.367	0.121

Models	RMSPE diff	Confidence from	Confidence to	P-val
XGBoost - SARIMAX	-0.126	-0.141	-0.111	<< 0.01
XGBoost - Holt- Winters	-0.218	-0.235	-0.200	<< 0.01

Results analysis Feature importance ■ Gain ■ Cover ■ Frequency 0.00% 25,00% 30.00% 5.00% 10,00% 15,00% 20,00% 35,00% CompetitionDistance Promo Store meanSalesDow **CompetitionOpenSinceMonth** CompetitionOpenSinceYear day meanSalesMonth Promo2SinceYear Promo2SinceWeek DayOfWeek meanCustDow month StoreType meanCustMonth Promo2 Assortment PromoInterval year meanSalesQ meanCustQ SchoolHoliday

quarter

<u> Filin Wóicik, Data science</u>

Results analysis

Wroclaw Universit

XGBoost – better results

Values for all metrics are better for the XGBoost algorithm.

Feature importance – time indicators

Among the first 15 most important attributes, there are time indicators– day, month, year. XGBoost was able to identify the impact of seasonality

Lower variance

The predictions of the XGBoost are more stable, compared to the rest of models, with much less variance

03

02

Lower training time

Training one model globally, for all stores, takes much less time than training 1115 SARIMAX or Holt-Winters models

Feature importance – seasonal indices

Among the first 15 key attributes, seasonal indices, such as average sales on the day of the week or month, have been identified as important.

Feature importance – static variables

Among the first 15 most important attributes, static variables/exogenous describing the characteristics of shops were correctly identified

<u> Jilin Wóicik, Data science</u>

Other datasets

	RMSE	MAE	RMSPE	С
XGB	0.146	0.123	1.321	20
ARIMA	0.330	0.206	2.654	

		RMSE	MAE	RMSPE
٦	XGB	0.002	0.002	0.01
	ARIMA	0.386	0.318	0.391

Summary

The initial results of the study seem to indicate that XGBoost is well suited as a tool for forecasting, both in typical time series and in mixed-character data.

Low variance

On all data sets tested, XGBoost predictions have low variance and are stable.

ilip Wójcik,

~

Trend and seasonality identification

The Model is able to recognize trends and seasonal fluctuations, and the significance of these attributes is confirmed by manual analysis.

Exogenous variables handling

The Model can simultaneously handle variables of the nature of time indexes and static exogenous variables

Chen, T. & Guestrin, C. (2016) "**XGBoost: A scalable tree boosting system**", in *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD '16*. New York, USA: ACM Press, p. 785–794

Ghosh, R. & Purkayastha, P. (2017) "Forecasting profitability in equity trades using random forest, support vector machine and xgboost", in *10th International Conference on Recent Trades in Engineering Science and Management*, p. 473–486.

Gumus, M. & Kiran, M. S. (2017) ,,**Crude oil price forecasting using XGBoost**", in 2017 International Conference on Computer Science and Engineering (UBMK). IEEE, p. 1100–1103.

Gurnani, M. et al. (2017) "Forecasting of sales by using fusion of machine learning techniques", in 2017 International Conference on Data Management, Analytics and Innovation (ICDMAI). IEEE, p. 93–101

Filip Wójcik, Data science

Wroclaw University of Economics and Business

THANK YOU FOR ATTENTION

Wroclaw University of Economics and Business

